
Written Exam for the M.Sc. in Economics, Winter 2020-21

Advanced Macroeconomics: Structural Vector Autoregressive Analysis: Solution

About the exam

The topic for this project examination is a small open economy growth model. The pur-

pose of the examination is to assess your understanding of structural vector autoregressive

(VAR) models. Substantial emphasis will be placed on using your programming skills in

MATLAB. Speci�cally, the examination assesses theoretical and practical knowledge of struc-

tural vector autoregressive models within stationary and non-stationary frameworks including

assessing empirical results, using di�erent approaches to identify VAR models and be able to

use MATLAB to generate empirical results. You can use any MATLAB functions that you

have programmed yourself or any function uploaded to Absalon during the course except when

otherwise stated. You are not allowed to use other programs or built-in MATLAB functions

except for those that are speci�ed in the questions below. The assignment requires some

additional coding.

Most questions in the examination are applied, concerning the empirical example outlined

below. When you answer these empirical questions, please explain and motivate your answers

as detailed as possible, preferably with reference to the underlying theory.

This exam focuses on a small open economy growth model. The steady-state solution to

this particular model can be summarized by the following two equilibrium relations

lnYt − ln It = v1

where Yt is GDP, It is investments and v1 is a constant, and

lnYt − lnCt + (1− b) lnPt = v2

where Ct is total consumption, b is the share of consumption of domestically produced goods

in total consumption, Pt is the terms-of-trade and v2 is a constant.

Assume that xt =
[

lnPt lnYt lnCt ln It
]′

=
[
pt yt ct it

]′
and suppose that this

vector is integrated of order one and ordered as in xt we �nd that the theoretical cointegration

vector β is given by

β′ =

[
0 1 0 −1

1− b 1 −1 0

]
The assignment will guide you through an empirical analysis of the time series vector

stated above including estimation and analysis of the cointegrated VAR model, identi�cation

of the structural cointegrated VAR model and robustness analysis.

Regarding the data for the exam paper, please note the following:

� All assignments are based on di�erent data sets. You should use the data set (monthly

data covering the period 1995:01-2015:01) located in the MATLAB �le 1234.mat, where

1234 is your exam number. This MATLAB �le contains the data (y), the dates (dates)

and the name of the variables (names). You can load this �le into MATLAB directly

using 'load 1234.mat'. In case you cannot �nd your exam number, you can use the

1000.mat �le.
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� To avoid that some data sets are more di�cult to handle than others, the data sets are

arti�cial (simulated from a known data generating process), and they behave, as close

as possible, like actual data.

The proposed solution below is based on the data set 1000.mat

1. The data is already in natural logarithms (real money balance and real GDP are in logs

whereas the money market rate is in percent). Plot the data and perform graphical

analysis in order to assess the degree of integration of all four variables.

Answer:

Figure 1: Plot of data.
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It is clear from this plot that there are linear trends in the data. Output lnY , consumption

lnC and investment ln I are all increasing over time. They also seem to follow each other in

downturns and upturns. Terms of trade lnP on the other hand has a downward trend and

could be stationary around a linear trend. The other three variables appear non-stationary.

The similar behavior of output, consumption and investment could indicate that these three

variables are cointegrated. The question is whether we need to allow for a linear trend in the

cointegration vector. This will be tested below.

The Vector Error Correction Model

Suppose that the four variables in xt are either I(1) or I(0) and that the underlying data

generating process is a Vector Autoregressive (VAR) model,

xt = ν +A1xt−1 + . . .+Apxt−p + ut (1)
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where xt is de�ned above, p is the lag length, ν is a constant term and ut is a vector of zero

mean white noise process with covariance matrix Σu such that ut ∼ (0,Σu). Then we can

rewrite the VAR model as the following Vector Error Correction (VEC) model

∆xt = ν + Πxt−1 + Γ1∆xt−1 + . . .+ Γp−1∆xt−p+1 + ut (2)

where

Π = −
(
I4 −A1 − . . .−Ap

)
and

Γi = −
(
Ai+1 + · · ·+Ap

)
for i = 1, . . . , p− 1.

The rank of Π is equal to the number of cointegration vectors r and Π can be decomposed

as a product of two 4 × r matrices of full rank, Π = αβ′ where α is the 4 × r adjustment

coe�cients and β is the 4× r cointegration vectors.

2. Formulate a well-speci�ed VEC model for xt similar to the VEC model above. Explain

your work�ow and how you argue for your choice of the number of autoregressive lags

in the VEC model (and in its associate VAR model).

Answer:

There are several di�erent approaches that can be used to determine the number of

lags in the underlying VAR model. All approaches are based on estimates of a VAR

in levels with a constant term. Three approaches have been used during the course:

lag length determination using information criteria, general-to-speci�c and speci�c-to-

general sequences. It is irrelevant which one is used here. All approaches should lead to

the same lag length.

Here we will apply information criteria (Akaike, Schwarz and Hannan-Quinn) and choose

the lag length that minimizes these measures. The work�ow should start with a maxi-

mum lag length and then we compute these criteria for each lag length p = 1, . . . , pmax

using the same number of observations for each lag length. The function p�nd.m pro-

duces the following output assuming that pmax = 12. From this table (and using all

three criteria) we learn that the optimal lag length is 2. The same result holds for all

data sets.

p SIC HQC AIC

1 -5.7007 -5.8796 -6.0005

2 -6.4541 -6.7761 -6.9939

3 -6.1470 -6.6121 -6.9267

4 -5.8384 -6.4467 -6.8580

5 -5.5581 -6.3095 -6.8176

6 -5.2490 -6.1435 -6.7485

7 -4.9099 -5.9475 -6.6492

8 -4.6008 -5.7816 -6.5801

9 -4.2733 -5.5972 -6.4925

10 -4.0096 -5.4766 -6.4687

11 -3.6968 -5.3070 -6.3958

12 -3.4100 -5.1633 -6.3489
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Alternatives to using information criteria as outlined above is to use one of the following

approaches:

� Top-down sequential testing (general-to-speci�c): The VAR(p) model is

yt = ν +A1yt−1 +A2yt−2 + . . .+Apyt−p + ut

where ν = A0. Start with a maximum number of lags pmax testing a sequence of

null hypotheses: H0: Apmax
= 0 vs. H1: Apmax

6= 0, H0: Apmax−1
= 0 vs. H1:

Apmax−1
6= 0, ..., H0: A1 = 0 vs. H1: A1 6= 0. Process terminates when there is a

rejection. Use Wald or LR tests.

Using this approach and assuming that the maximum lag length is 4, we �nd the

following result also suggesting 2 lags in the VAR model.

Lag Log Likelihood LR stat p-value

1 -620.98 2581.35 0.000

2 -484.36 273.26 0.000

3 -475.37 17.97 0.325

4 -467.61 15.51 0.488

� Bottom-up sequential testing (speci�c-to-general): Reverse the procedure above,

start with pmin testing for autocorrelation in the residuals (using for example a

multivariate test). Add lags until there is no signi�cant autocorrelation. Applying

this approach we still �nd 2 lags in the VAR model.

Answers using either of these two latter approaches should also be accepted and receive

full points if correctly implemented and explained.

3. Test for multivariate autocorrelation, heteroscedasticity and normality. Does your model

satisfy the underlying assumptions? If the multivariate tests of autocorrelation and

ARCH reject the null hypotheses, apply univariate tests for autocorrelation and ARCH

in the residuals in each equation. You are allowed to use the built-in MATLAB functions

lbqtest and archtest.

Answer: To verify that the model is well-speci�ed when assuming that the lag length is

equal to 2, we next test for autocorrelation and heteroscedasticity in the residuals and the

null hypothesis that the residuals are normally distributed. We should use multivariate

tests provided in the functions: portman.m, march.m and multnorm.m. First we need

to re-estimate the VAR(2) model using VARls.m. We allow for a constant term but no

linear trend. The argument used to exclude a linear trend is that the VAR in levels can

be re-written as a VAR in �rst di�erences (and as a VEC model) by subtracting yt−1

from both sides of the levels VAR leaving the constant term and the residuals una�ected.

We obtain the following results:

� Portmanteau test.
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Test Statistic

Tested order: 6

Test statistic 67.749

p-value 0.35055

Adjusted test statistic 68.953

p-value 0.31364

degrees of freedom 64

We cannot reject the null hypothesis that there is no autocorrelation present in the

residuals.

� Tests for Multivariate ARCH.

Test Doornik-Hendry

test statistic: 426.48

p-value 0.17369

degrees of freedom 400

We cannot reject the null hypothesis that there are no ARCH-e�ects in the resid-

uals.

� Tests for non-normality.

Test Doornik-Hansen Lütkepohl

joint test statistic: 2.7898 2.7056

p-value 0.94685 0.95145

degrees of freedom 8 8

Skewness only 0.74727 1.2342

p-value 0.94537 0.87244

kurtosis only 2.0425 1.4714

p-value 0.72794 0.83169

We �nd that we cannot reject the null hypothesis that the residuals are normally

distributed.

Note that results may di�er depending on the tested orders used when testing for auto-

correlation and ARCH. However, the results should all point in the direction of 2 lags

in the VAR model. It seems as if this is the optimal lag length in the present setting.

This conclusion holds for all data sets. There is no need for using the univariate tests,

i.e., testing residuals in each equation.

4. For your preferred model, proceed by testing for cointegration using the MATLAB func-

tion jcitest. Explain your approach and how you �nd the number of cointegration vectors,

that is, the rank r, in the system allowing for (i) a constant term in the cointegration

vector and (ii) both a constant and a linear trend in the cointegration vector. Do you

use di�erent sources of information when determining the rank? If so, explain how you

arrive at your decision.

Answer: Starting with the hypothesis that r = 0 we �nd that the null hypothesis that

r = 0 is rejected at the 1 percent level. Increasing the rank we �nd that we can reject
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the null that r = 1. Turning to the null that r = 2 we �nd that we cannot reject this

hypothesis. The data, therefore, suggest the presence of2 cointegration vectors.

We can also use the estimated eigenvalues as an alternative source of information when

determining the rank. As is clearly illustrated in the table above, the eigenvalue falls

substantially when increasing the rank from 2 to 3. Our conclusion that the rank is

equal to 21 is clearly supported.

A good answer must include a description of the approach, the so called Pantula prin-

ciple, where we start by considering the null hypothesis that the rank is 0 and then we

test the null that the rank is 1 and so on. A sensitivity analysis of the unimportance of

the number of lags could be included and, if so, it should be given additional credit.

Under the assumption that there is a constant term in the cointegratiopn vector and

using the command [h,pValue,stat,cValue,mles] = jcitest(y,'lags',p-1,'model','H1'); we

�nd the following result. Note that we need to tell matlab that the lag length in the

VEC model is equal to p− 1, not p.

r h stat cValue pValue eigVal

0 1 176.4483 47.8564 0.0010 0.3485

1 1 74.0441 29.7976 0.0010 0.2426

2 0 7.6354 15.4948 0.5493 0.0313

3 0 0.0337 3.8415 0.8547 0.0001

The estimated cointegration vectors (assuming that the rank = 2) are [ 0.1293 1.0000 −0.5519 −0.4487 ]

and [ 0.0133 1.0000 0.0460 −1.0461 ]

When allowing for a linear trend in the cointegration vector we �nd (using the command

[h,pValue,stat,cValue,mles] = jcitest(y,'lags',p-1,'model','H*');)

r h stat cValue pValue eigVal

0 1 183.5221 63.8766 0.0010 0.3540

1 1 79.1017 42.9154 0.0010 0.2501

2 0 10.3213 25.8723 0.9106 0.0313

3 0 2.7130 12.5174 0.9087 0.0113

The test results above strongly suggest that there are 2 cointegration vectors present in

our system. Estimated cointegration vectors seem to mirror the theoretical cointegration

vector.

5. Perform a test of the null hypothesis that there is no linear trend in the cointegration

vectors.

Answer: To test whether the linear trend in the cointegration vector is equal to zero,

we use the following code:

RR = [ 0 0 0 0 1 ]′;

[h0,pValue2,stat,cvalue2,mles1] = jcontest(y,2,'Bcon',RR,'lags',p-1,'model','H');

display(mles1.paramVals.B,'Estimated cointegration vector');

display(mles1.paramVals.d0,'Estimated linear trend in cointegration vector');

display(pValue2,'Testing presence of linear trend in beta');
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Implementing this code we �nd that we cannot reject the null hypothesis that the co-

e�cient associated with a linear trend in the cointegration vector is equal to zero. The

estimated cointegration vector is


−0.3717 −0.0465

−2.8752 −3.4932

1.5868 −0.1608

1.2901 3.6541


and we need to con�rm that the estimated linear trend in cointegration vector is zero.

The p-value of the LR test is 0.1115 suggesting a non-rejection of the null hypothesis.

6. Impose your preferred rank and the preferred speci�cation of the deterministic com-

ponent in the cointegration vector found in the previous question and test hypotheses

on the cointegration space using the MATLAB function jcontest. Test for exclusion,

stationarity and weak exogeneity. Explain the meanings of these tests.

Answer: To implement these tests we use the following code:

�[h7] = jcontest(y,2,'Bvec',[1 0 0 0]',[0 1 0 0]',[0 0 1 0]',[0 0 0 1]','lags',p-1,'model','H1')

%%

% Exclusion

[h2,pValue2] = jcontest(y,2,'Bcon',[1 0 0 0]',[0 1 0 0]',[0 0 1 0]',[0 0 0 1]','lags',p-1,'model','H1')

%%

% Weak exogeneity

[h1,pValue1] = jcontest(y,2,'Acon',[1 0 0 0]',[0 1 0 0]',[0 0 1 0]',[0 0 0 1]','lags',p-1,'model','H1')

Using this code we �nd that we always reject stationarity and exclusion whereas we

cannot reject the null that the adjustment coe�cients are equal to zero in the �rst

two equations but reject the null that they are equal to zero in the last two equations.

These results concerning weak exogeneity can vary across data sets but stationarity and

exclusion test results are uniform across all data sets.

7. Interpret the unrestricted estimated cointegration vectors in light of the theoretical

model above. Do you �nd plausible values of the parameters in the estimated coin-

tegration vectors?

Answer: The estimated cointegration vectors assuming that the rank = 2 and that there

is only a constant term in the cointegration vector are [ 0.1293 1.0000 −0.5519 −0.4487 ]

and [ 0.0133 1.0000 0.0460 −1.0461 ]. We can then compare these estimates with

the theoretical cointegration vector

β′ =

[
0 1 0 −1

1− b 1 −1 0

]
Comparing these we note that the second estimated cointegration vector is close to

the �rst theoretical vector. The �rst and third coe�cients are close to zero whereas

the remaining parameters are close to 1 but with opposite signs. The �rst estimated
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vector is di�erent from the second theoretical vector. It is not clear whether the fourth

parameter is di�erent from zero as it should be according to the theoretical vector.

8. Test formally whether the theoretical cointegration vectors are in line with the infor-

mation in the data using the MATLAB function jcontest. Estimate the parameter b in

the theoretical cointegration vector. Do you obtain a plausible value of b? Explain how

your tests relate to the exclusion and stationarity tests.

Answer: First we consider tests of the theoretical cointegration vectors. The problem is

how to handle the constant b present in the vector. We know from the theoretical model

that 0 < b < 1 since it is a share of consumption of domestically produced goods in total

consumption. In a closed economy b = 0 and therefore the theoretical cointegration

vector is

β′ =

[
0 1 0 −1

1 1 −1 0

]
We can test whether these are in the data using the following codes:

% Testing first theoretical cointegration vector allowing the second vector

to be freely estimated

RR = [ 0 1 0 -1]';

[h0,pValue2,stat,cvalue2,mles1] = jcontest(y,2,'Bvec',RR,'lags',p-1);

display(mles1.paramVals.B,'Estimated cointegration vector');

display(pValue2,'Testing hypotheses on beta');

We obtain the following estimated cointegration vector

0 0.3685

1.0000 0.7968

0 −1.5952

−1.0000 0.7968

and the p-value = 0.0646 implying that we cannot reject this hypothesis at the 10 percent

level.

Testing whether the second cointegration vector is present in the data we use the fol-

lowing code

% Testing second theoretical cointegration vector allowing the second vector

to be freely estimated

RR = [ 1 1 -1 0]';

[h0,pValue2,stat,cvalue2,mles1] = jcontest(y,2,'Bvec',RR,'lags',p-1);

display(mles1.paramVals.B,'Estimated cointegration vector');

display(pValue2,'Testing hypotheses on beta');

We obtain the following estimated cointegration vector

1 −1.3047

1 1.3789

−1 0.0742

0 −1.4553
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and the p-value = 0.000 implying a clear rejection of this vector.

Then we turn to the parameter b. One way to look at this is to use di�erent values

of b to �nd a value where the theoretical vector is not rejected. Another approach is

to implement a restriction on the cointegration space allowing b to be estimated. In

matlab, given it's restrictions on how to impose restrictions, the former approach is

easier to implement. In this particular exercise we know that the data is generated

using a particular value of b also suggesting that the former approach could be used.

Using a sequential approach, we let b to take on values from 1 down to 0.5 in steps of

0.05 to �nd the value of b where the p-value of a test of the second theoretical vector

cannot be rejected. Using the

% Testing second theoretical cointegration vector allowing the second vector

to be freely estimated

b = 0.75; RR = [ 1-b 1 -1 0]';

[h0,pValue2,stat,cvalue2,mles1] = jcontest(y,2,'Bvec',RR,'lags',p-1);

display(mles1.paramVals.B,'Estimated cointegration vector');

display(pValue2,'Testing hypotheses on beta');

we �nd that this cointegration vector cannot be rejected (the p-value is 0.1730) and the

implied value of b = 0.75. A good answer must include a discussion about how b can be

inferred and an attempt to �nd a value of b. The theoretical value is 0.75 for all data

sets.

9. Plot both the unrestricted and theoretical cointegration vectors. Interpret your results.

Answer: Using the value b = 0.75 to compute the theoretical cointegration vectors

and the unrestricted estimate found when testing for cointegration above we obtain the

following graph.
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10. Split the sample into two equal sized sub-samples and perform tests for cointegration

using the MATLAB function jcitest. Comment on the importance of the sample length

for these tests.

Answer: We split the sample in two equal parts, observations 1 to 120 in the �rst

sub-sample and observations 121 to 241 in the second sub-sample.

Testing for cointegration using the �rst sub-sample we obtain

r h stat cValue pValue eigVal

0 1 100.0973 47.8564 0.0010 0.3546

1 1 48.4197 29.7976 0.0010 0.2801

2 0 9.6365 15.4948 0.3528 0.0561

3 0 2.8267 3.8415 0.0927 0.0237

and for the second sub-sample we obtain

r h stat cValue pValue eigVal

0 1 106.6691 47.8564 0.0010 0.4187

1 1 42.1205 29.7976 0.0014 0.2549

2 0 7.1087 15.4948 0.6010 0.0390

3 0 2.3795 3.8415 0.1232 0.0198

As can be seen in these tables the main conclusion drawn when using the full sample still

holds. Point estimates do change but given a well-behaved data such as the present one,

results are unchanged. But, using actual data we expect to �nd di�erences, p-values

tend to increase when using shorter time series illustrating that tests for cointegration

and unit roots are biased when using short samples.

Identi�cation of Structural Model

11. Impose r = 2 and the theoretical cointegration vector and re-estimate the VEC model

using the full sample and using your preferred lag length found above. Suggest an

identi�cation scheme including names of the four structural shocks in the VAR/VEC

system using long-run identi�cation. If you cannot provide names for these shocks, try

to explain how they a�ect the data under the maintained assumptions.

Answer: In the present VAR model we have four variables and thus four structural

shocks. In addition, we have established that there are two cointegration vectors in

the system. Therefore, there are two common trends or permanent shocks and two

transitory shocks. Given that we have assumed a small open economy it seems natural

to assume that we have one foreign trend and one domestic trend. Furthermore, a small

open economy assumption suggests that the domestic trend cannot a�ect the foreign

variable (terms-of-trade) in the long-run. The transitory shocks are both domestic and

relates to consumption and investment demand changes (or shocks). These transitory

shocks have no long-run e�ect on any variable.

12. Write down the reduced form and structural form Common Trends model consistent

with the VEC model. Show how these two representations are related. What is the
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consequence for the long-run multiplier if we assume that the rank r = 2?

Answer: The VEC model stated in this problem set can then be rewritten as a Common

Trends model

xt = Ξ
t∑

i=1

ut + Ξ∗(L)ut + y∗0

where

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥

and where α⊥ and β⊥ are orthogonal complements to α and β respectively.

Imposing an identi�cation scheme on the reduced form model above allow us to formulate

the following structural Common Trends model

xt = Ξ

t∑
i=1

B−1
0 wi + Ξ∗(L)B−1

0 wt + y∗0

xt = ΞB−1
0︸ ︷︷ ︸

Υ

t∑
i=1

wi + Ξ∗(L)B−1
0 wt + y∗0 = Υ

t∑
i=1

wi + Ξ∗(L)B−1
0 wt + y∗0

where Υ is the matrix of long-run multipliers, it measures the long-run e�ect of the

common trends (or the permanent shocks). In our case with two transitory shocks, we

know that the last two columns of Υ are equal to zero (given that we order permanent

shocks �rst in the vector of structural shocks). The small open economy assumption

implies a zero restriction in the �rst or second column of Υ depending on how we order

the variables. Other parameters in Υ are freely estimated. Also note that the long-run

e�ects of the stationary part Ξ∗(L)B−1
0 wt goes to zero as j →∞. The rank of Υ is the

same as the rank of Ξ, i.e., rank K − r.
The interpretation of the permanent and transitory shocks in the current setting is

discussed above. We associate the two permanent shocks with a foreign and a domestic

trend. These shocks have permanent e�ects on at least one of the four variables in our

system. To just identify these two shocks we need to introduce one restriction. We then

have two transitory shocks, the consumption and investment demand shocks. These

shocks have only short-term e�ects on the four variables. To identify the two transitory

shocks we need to impose one restriction on B−1
0 .

A good answer must include a discussion of possible shocks a�ecting the VAR/VEC

system. The arguments above may not be the only available option, but it is essential

that the answer includes a motivation and main arguments based on economic model or

intuition.

13. Outline how the MATLAB solver can be used to impose long-run restrictions in your

model.

Answer: We have mentioned above that we need to impose one restriction on Υ to

identify the two permanent shocks and one restriction on B−1
0 to identify the tran-

sitory shocks. Given the ordering of the time series vector state dabove, i.e., xt =
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[
pt yt ct it

]′
we impose the restriction that the �rst element in the second column

of Υ is equal to zero. This restriction implies that the domestic trend (the second struc-

tural shock) has no long-run e�ect on terms-of-trade. To identify the transitory shocks

we assume that the third element in the fourth column of B−1
0 is zero. This implies that

that the third structural shock (investment demand shock) has no contemporaneous ef-

fect on consumption. Since we are only interested in the impulse responses of the data

to the two permanent shocks, this latter restriction is irrelevant.

% restrictions.m

function q=restrictions(B0inv)

global GAMMA SIGMA alpha beta alpha_perp beta_perp Xi p

K=size(B0inv,1);

THETA1=Xi*B0inv;

% This is Upsilon F=vec(B0inv*B0inv'-SIGMA(1:K,1:K));

% Long run and short run restrictions

q=[F; B0inv(3,3); THETA1(1,2); THETA1(1,3); THETA1(1,4); THETA1(2,3); THETA1(2,4);

THETA1(3,3); THETA1(3,4); THETA1(4,3); THETA1(4,4)];

q'+1;

where the notation is standard.

Impulse Responses and Forecast Error Variance Decomposition

14. Implement the identi�cation scheme using the MATLAB solver. Check that the solver

provides a valid identi�cation and compute the variance-covariance matrix of the identi-

�ed structural shocks. Please, provide the MATLAB code you are using to identify the

shocks in the appendix. It must include a description of the restrictions you impose to

identify the structural model.

If you fail computing the B−1
0 matrix using the MATLAB solver, please use the ident.p

�le. This �le works as a standard m-�le but the coding is concealed and there is no

way to convert the p-�le into an m-�le. Note that the ident.p �le is set up to use a

closed form solution to compute the B−1
0 matrix using a generic identi�cation based on

estimates from the VEC model. To use this function, you need to add the following

code to your MATLAB m-�le and you need to set the rank equal to 2. You can use any

number of lags. Note: Make sure that you don't have any ident.m �les in the same folder.

The same function can be used in a bootstrap. Note also that it will be impossible to

interpret the impulse response function and the variance decomposition using economic

theory as the identi�cation is incorrect.

% Use generic identification

% Input:

% alpha is the K x r adjustment coefficient matrix

% beta is the r x K cointegration vector

% Gamma = [ Gamma(1) Gamma(2) .... Gamma(p-1)] coefficent matrix

% sigmahat = Sigma_u (the residual covariance matrix)
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% K is the number of variables in the VAR

% p is the number of lags in underlying VAR

% r is the rank

%

% Output:

% invB0 is the inverse of the B0 matrix

% Xi is the C(1) matrix

[invB0,Xi]=ident(alpha,beta,Gamma,sigmahat,K,p,r)

Answer: After implementation of the matlab solver we have an estimate of the B−1
0 -

matrix. The next step is to check that the identi�cation is valid. First of all we need

to make sure that the sign of the shocks are the same when implementing a bootstrap

procedure as we do below. For example, we may be interested in the e�ects of positive

permanent shocks. In this case we need to check that the �rst two elements in the

diagonal of B−1
0 are positive. If this is not the case, then we need to switch the sign of

all elements in the same column. Then we need to con�rm that the restriction on Υ is

implemented and that the last two columns in this matrix are zero. The restriction on

B−1
0 can also be checked. Lastly, we can compute the structural shocks wt and check

that the variance-covariance matrix of these shocks is an identity matrix. In some cases

we need to increase the number of iterations to allow matlab to �nd a solution.

The code to check the identi�cation:

� Switch signs in columns of B−1
0 :

% Switch signs if necessary!

%

if invB0(1,1)<0

invB0(:,1)=-invB0(:,1);

end

� Check that βΞ = 0

display(beta*Xi,'beta*Xi should be zero');

� Check that ΞB−1
0 = Υ

display(Xi*invB0,'(3) C(1)*B0�-1 should be Upsilon zeros(K,r)');

display(Upsilon,'where Upsilon');

� Check that the variance-covariance of structural shocks is the identity matrix.

display(inv(invB0)*sigmahat*inv(invB0)','(4) Covariance matrix of structural

shocks w_t should be I_K');

15. Estimate the structural VAR model and compute impulse response functions (using the

standard residual based recursive design bootstrap and IRF con�dence bands computed

using the delta method) and variance decomposition (with bootstrap standard errors

using Efron's percentile intervals). Focus only on the impulse responses of the data to

the two permanent shocks. You can show forecast error variance decomposition in either

a table or in a graph. Interpret your results.
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Answer: Implementing the matlab solver above and compute the impulse responses

and the variance decompositions and computing standard errors using bootstrap with

500 trials checking that the identi�cation is valid in each bootstrap replication including

whether the simulated VEC model satis�es our assumptions we can show the results in

graphs. In these estimations we assume that b = 0.75 in the theoretical cointegration

vector.

The implied impulse responses to a positive foreign and domestic permanent shock are

shown below.

Figure 3: IRF: Positive permanent foreign shock.
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Figure 4: IRF: Positive permanent domestic shock
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The impulse responses accords with priors and the implied small open economy restric-

tion is clearly visible.
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Variance decompositions are shown below.

Figure 5: FEVD: Positive permanent foreign shock.
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Figure 6: FEVD: Positive permanent domestic shock
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A surprising result is that the foreign shock does not explain much of the domestic

variables. Results could vary across data sets but the main conclusions should be the

same.

16. Instead of implementing the theoretical cointegration vector you can use the estimated

cointegration vector still imposing r = 2. Identify the structural shocks using long-run

restrictions and plot the implied impulse responses of the data together with con�dence

bands. Focus only on the e�ects of the permanent shocks. Compare your results to what

you previously found using the theoretical cointegration vector.

� 15 �



If you fail computing the B−1
0 matrix using the MATLAB solver, please use the ident.p

�le again. The code is generic and works for any cointegration vector. However, you

cannot compare your results in any meaningful way.

Answer:

Figure 7: IRF: Positive permanent foreign shock. Estimated cointegration vector.
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Figure 8: IRF: Positive permanent domestic shock. Estimated cointegration vector.
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Comparing with the IRF's and FEVD's using the theoretical cointegration vectors we

�nd only minor di�erences. The reason for this is that the theoretical and estimated

cointegration vectors are very similar. This implies that the estimates of the B−1
0 matrix

are similar and together with similar estimates of the VEC model, the implied IRF's

and FEVD's must also be similar. Note that in some data sets, there will be a minor

di�erence. A good answer should include the estimates of α, β, the companion matrix
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A and the estimated B−1
0 matrix.

Figure 9: FEVD: Positive permanent foreign shock. Estimated cointegration vector.
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Figure 10: FEVD: Positive permanent domestic shock. Estimated cointegration vector.
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Extensions

17. An alternative to using the MATLAB solver to compute the B−1
0 matrix is to use the

approach suggested by Warne (1993). Outline this approach and show how the Warne

approach can be used to identify the structural shocks in your preferred VEC model.

Discuss both the identi�cation of permanent and transitory shocks.
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Answer: The underlying idea of this approach is to �rst decompose

B−1
0 =

[
Fk

Fr

]
and then we compute the two parts independently since the identi�cation of permanent

shocks are independent on the identi�cation of the transitory shocks. Consider �rst

the identi�cation of the permanent shocks. Following Warne we �rst need to de�ne

the matrix Υ0 such that β′Υ0 = 0. We can use iether the theoretical or the estimated

cointegration vector to solve for Υ0. Given a Cholesky decomposition of(
Υ′0Υ0

)−1
Υ′0ΞΣuΞ′Υ0

(
Υ′0Υ0

)−1

where we note that given our choice of Υ0 and the estimated VEC model the expression

above is known. The Cholesky decomposition of this matrix is denoted π. This allows

us to compute Υ = Υ0π in the common trend model. The permanent shocks are then

identi�ed, Fk = (Υ′Υ)−1 Υ′Ξ.

To identify the transitory shocks, we �rst de�ne a matrix U

U =
[

0r×K−r I+
r

]
de�ning ξ = α (Uα)−1 we then computea matrix Q which is the Cholesky decomposition

of ξ′Σ−1
u ξ and then �nally we identify the transitory shocks using the matrix Fr =

Q−1ξ′Σ−1
u

In our example, we have two theoretical cointegration vectors. If we de�ne

Υ0 =


1 0

0 1

1− b 1

0 1


and given that π is a lower triangular matrix we �nd that

1 0

0 1

1− b 1

0 1

[ π11 0

π21 π22

]
=


π11 0

π21 π22

(1− b)π11 + π21 π22

π21 π22


where we see that the identifying restriction that the second permanent shock has no

long-run e�ect on the �rst variable is imposed.

Since we have two transitory shocks and to implement the restriction that the third

element in the third column is equal to zero we de�ne

U =

[
0 0 0 1

0 0 1 0

]
It is now straightforward to code this. For this ordering of the variables we can verify

that the B−1
0 matrix found using the Warne method is equal to the one found by the

solver. It could be that we need to switch signs on one or two columns of the solver

solution, but the absolute values are identical.

� 18 �



18. Code this identi�cation and compute the implied B−1
0 matrix and show that it is identical

to the one found by the solver. Please, provide the code you are using in the appendix.

Answer: The following code implements this identi�cation. The notation is standard.:

function [invB0,Xi]=ident2(alpha,beta,Gamma,sigmahat,K,p,r)

% Use the matlab function null to compute orthogonal complements

beta_perp=null(beta);

alpha_perp=null(alpha');

% Compute GammaSum

GammaSum=Gamma(1:K,1:K);

if p>2

for i=1:p-2

GammaSum=GammaSum+Gamma(1:K,i*K+1:i*K+K);

end;

end

% Compute Xi=C(1)

Xi=beta_perp*inv(alpha_perp'*(eye(K)-GammaSum)*beta_perp)*alpha_perp';

% Identification of permanent shocks and transitory shocks

% according to Warne.

% Impose restrictions to identify permanent shock

% Upsilon_0

u31 = beta(2,1);

u32 = 1;

u41 = 0;

u42 = 1;

%Upsilon0 = [1 0;0 1; u31 u32;u41 u42];

% Impose restrictions to identify transitory shocks

% Impose restriction that B0−1
2,2 = 0

% Code below use Umat = TID

% If you want to use an automatic selection,

% set TID=0.

TID = 0;

MHLP=inv(Upsilon0'*Upsilon0)*Upsilon0'*Xi;

pipit=MHLP*sigmahat*MHLP';

pimat=chol(pipit)';

Upsilon=Upsilon0*pimat;

Fk=inv(Upsilon'*Upsilon)*Upsilon'*Xi;

%display(Fk,'Fk matrix');

% Identification transitory shocks

Umat=zeros(r,K);

% If TID=0, use automatic Umat, otherwise use TID defined above

if TID==0;

i=1;

while i<=r;

Umat(i,K-i+1)=1;
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i=i+1;

end;

else

Umat = TID;

end

xi=alpha*inv(Umat*alpha);

i=1;

while i<=K;

j=1;

while j<=r;

if abs(xi(i,j))<=1E-12; % just to make sure that elements are = 0

xi(i,j)=0;

else

end

j=j+1;

end

i=i+1;

end

qr=chol(xi'*inv(sigmahat)*xi)';

Fr=inv(qr)*xi'*inv(sigmahat);

%display(Fr,'Fr matrix');

% Putting it all together to compute B0inv

invB0 = inv([Fk;Fr]);

end

Using the code above we �nd that the following estimate of B−1
0

0.28952450935 −0.03118291330 −0.09419711329 −0.00258368709

0.01885033074 0.31412528439 −0.05192604615 0.01910139425

0.13647766008 0.37699777451 0 −0.88000270177

−0.07791414260 0.24901615613 −0.34131942386 0.02949758117

that can be compared to what we �nd using the matlab solver

0.28952450935 −0.03118291330 −0.09419711329 −0.00258368709

0.01885033074 0.31412528439 −0.05192604615 0.01910139425

0.13647766008 0.37699777451 0 −0.88000270177

−0.07791414260 0.24901615613 −0.34131942386 0.02949758117

Note that there could be numerical di�erences at 12th decimal point but the �rst 10/11

decimals must be identical.
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